试题
题目:
如图,从热气球C处测得地面A、B两点的俯角分别为30°、45°,如果此时热气球C处的高度CD为100米,点A、D、B在同一直线上,则AB两点的距离是
100(
3
+1)米
100(
3
+1)米
.
答案
100(
3
+1)米
解:∵从热气球C处测得地面A、B两点的俯角分别为30°、45°,
∴∠BCD=90°-45°=45°,∠ACD=90°-30°=60°,
∵CD⊥AB,CD=100m,
∴△BCD是等腰直角三角形,
∴BD=CD=100m,
在Rt△ACD中,
∵CD=100m,∠ACD=60°,
∴AD=CD·tan60°=100×
3
=100
3
m,
∴AB=AD+BD=100
3
+100=100(
3
+1)m.
故答案为:100(
3
+1)米.
考点梳理
考点
分析
点评
专题
解直角三角形的应用-仰角俯角问题.
先根据从热气球C处测得地面A、B两点的俯角分别为30°、45°可求出∠BCD与∠ACD的度数,再由直角三角形的性质求出AD与BD的长,根据AB=AD+BD即可得出结论.
本题考查的是解直角三角形的应用-仰角俯角问题,熟知锐角三角函数的定义是解答此题的关键.
压轴题;探究型.
找相似题
(2013·太原)如图,某地修建高速公路,要从B地向C地修一座隧道(B、C在同一水平面上).为了测量B、C两地之间的距离,某工程师乘坐热气球从C地出发,垂直上升100m到达A处,在A处观察B地的俯角为30°,则B、C两地之间的距离为( )
(2013·衢州)如图,小敏同学想测量一棵大树的高度.她站在B处仰望树顶,测得仰角为30°,再往大树的方向前进4m,测得仰角为60°,已知小敏同学身高(AB)为1.6m,则这棵树的高度为( )(结果精确到0.1m,
3
≈1.73).
(2012·泰安)如图,为测量某物体AB的高度,在D点测得A点的仰角为30°,朝物体AB方向前进20米,到达点C,再次测得点A的仰角为60°,则物体AB的高度为( )
(2012·黔西南州)兴义市进行城区规划,工程师需测某楼AB的高度,工程师在D得用高2m的测角仪CD,测得楼顶端A的仰角为30°,然后向楼前进30m到达E,又测得楼顶端A的仰角为60°,楼AB的高为( )
(2010·钦州)如图,为测量一幢大楼的高度,在地面上距离楼底O点20m的点A处,测得楼顶B点的仰角∠OAB=65°,则这幢大楼的高度为(结果保留3个有效数字)( )