试题

题目:
青果学院如图,在同一地面上有两幢高楼AB与CD,AB高为90米,从高楼AB的顶C测得高楼CD的顶C的仰角为30°,底D的俯角为45°,求楼CD的高度.
答案
青果学院解:延长过点A的水平线交CD于点E,则有AE⊥CD,四边形ABDE是矩形,AE=BD=90米.
∵∠DAE=45°,
∴△AED是等腰直角三角形,
∴DE=AE=90米.
在Rt△AEC中,tan∠EAC=
CE
AE

∴CE=90×tan30°=30
3
米,
∴CD=CE+ED=(90+30
3
)米,
答:楼CD的高是(90+30
3
)米.
青果学院解:延长过点A的水平线交CD于点E,则有AE⊥CD,四边形ABDE是矩形,AE=BD=90米.
∵∠DAE=45°,
∴△AED是等腰直角三角形,
∴DE=AE=90米.
在Rt△AEC中,tan∠EAC=
CE
AE

∴CE=90×tan30°=30
3
米,
∴CD=CE+ED=(90+30
3
)米,
答:楼CD的高是(90+30
3
)米.
考点梳理
解直角三角形的应用-仰角俯角问题.
在题中两个直角三角形中,知道已知角和其邻边,只需根据正切值求出对边后相加即可.
本题考查的是解直角三角形的应用-仰角俯角问题,涉及到特殊角的三角函数值及等腰三角形的判定,熟知以上知识是解答此题的关键.
找相似题