试题
题目:
(2011·虹口区模拟)如图,用线段AB表示的高楼与地面垂直,在高楼前D点测得楼顶A的仰角为30°,向高楼前进60米到C点,又测得楼顶A的仰角为45°,且D、C、B三
点在同一直线上,则该高楼的高度为
(
30
3
+30)
(
30
3
+30)
米(结果保留根号).
答案
(
30
3
+30)
解:Rt△ABC中,∠ACB=45°,
∴BC=AB;
Rt△ABD中,∠ADB=30°,
∴BD=
AB
tan30°
=
3
AB;
∴DC=BD-BC=(
3
-1)AB=60米.
∴AB=
60
3
-1
=(30
3
+30)米.
答:楼的高度为(30
3
+30)米.
考点梳理
考点
分析
点评
解直角三角形的应用-仰角俯角问题.
由于AB是Rt△ABD和Rt△ABC的公共直角边,可在Rt△ABC中,根据∠ACB的正切值,用AB表示出BC的长;同理可在Rt△ABD中,根据∠D的度数,用AB表示出BD的长;根据CD=BD-BC,即可求得AB的长.
本题考查仰角的定义,以及解直角三角形的实际应用问题.此题难度不大,解题的关键是要求学生能借助仰角构造直角三角形并解直角三角形,注意当两个直角三角形有公共边时,利用这条公共边进行求解是解此类题的常用方法.
找相似题
(2013·太原)如图,某地修建高速公路,要从B地向C地修一座隧道(B、C在同一水平面上).为了测量B、C两地之间的距离,某工程师乘坐热气球从C地出发,垂直上升100m到达A处,在A处观察B地的俯角为30°,则B、C两地之间的距离为( )
(2013·衢州)如图,小敏同学想测量一棵大树的高度.她站在B处仰望树顶,测得仰角为30°,再往大树的方向前进4m,测得仰角为60°,已知小敏同学身高(AB)为1.6m,则这棵树的高度为( )(结果精确到0.1m,
3
≈1.73).
(2012·泰安)如图,为测量某物体AB的高度,在D点测得A点的仰角为30°,朝物体AB方向前进20米,到达点C,再次测得点A的仰角为60°,则物体AB的高度为( )
(2012·黔西南州)兴义市进行城区规划,工程师需测某楼AB的高度,工程师在D得用高2m的测角仪CD,测得楼顶端A的仰角为30°,然后向楼前进30m到达E,又测得楼顶端A的仰角为60°,楼AB的高为( )
(2010·钦州)如图,为测量一幢大楼的高度,在地面上距离楼底O点20m的点A处,测得楼顶B点的仰角∠OAB=65°,则这幢大楼的高度为(结果保留3个有效数字)( )