试题
题目:
(2011·平湖市模拟)世界上最长的跨海大桥--杭州湾跨海大桥于2008年5月1日正式通车.两主塔与它们之间的斜拉索构成美轮美奂的对称造型,现测得跨海大桥主塔AB、CD之间的距离BD为448米,主塔AB的一根斜拉索AF的仰角为∠AFB=28.2°,且EF的长度为36米,则该桥的主塔AB高为
130
130
米.(精确到米,sin28.2°≈0.473,cos28.2°≈0.881,tan28.2°≈0.536)
答案
130
解:∵BE=FD=
BD-EF
2
=
448-36
2
=206米,
∴BF=BE+EF=206+36=242米.
∵在直角△ABF中,tan∠AFB=
AB
BF
,
∴AB=BF·tan∠AFB=242×tan28.2°≈242×0.536=129.712≈130米.
故答案是:130.
考点梳理
考点
分析
点评
解直角三角形的应用-仰角俯角问题.
根据BE=FD=
BD-EF
2
,即可求得BE的长,则BF即可求得,则在直角△ABF中,已知一个锐角和一直角边,利用正切函数即可求得AB的长.
本题考查了仰角的概念,以及解直角三角形的应用,理解正切函数的定义,求得BF的长是解题关键.
找相似题
(2013·太原)如图,某地修建高速公路,要从B地向C地修一座隧道(B、C在同一水平面上).为了测量B、C两地之间的距离,某工程师乘坐热气球从C地出发,垂直上升100m到达A处,在A处观察B地的俯角为30°,则B、C两地之间的距离为( )
(2013·衢州)如图,小敏同学想测量一棵大树的高度.她站在B处仰望树顶,测得仰角为30°,再往大树的方向前进4m,测得仰角为60°,已知小敏同学身高(AB)为1.6m,则这棵树的高度为( )(结果精确到0.1m,
3
≈1.73).
(2012·泰安)如图,为测量某物体AB的高度,在D点测得A点的仰角为30°,朝物体AB方向前进20米,到达点C,再次测得点A的仰角为60°,则物体AB的高度为( )
(2012·黔西南州)兴义市进行城区规划,工程师需测某楼AB的高度,工程师在D得用高2m的测角仪CD,测得楼顶端A的仰角为30°,然后向楼前进30m到达E,又测得楼顶端A的仰角为60°,楼AB的高为( )
(2010·钦州)如图,为测量一幢大楼的高度,在地面上距离楼底O点20m的点A处,测得楼顶B点的仰角∠OAB=65°,则这幢大楼的高度为(结果保留3个有效数字)( )