试题
题目:
(2009·济南)九年级三班小亮同学学习了“测量物体高度”一节课后,他为了测得如图所放风筝的高度,
进行了如下操作:
(1)在放风筝的点A处安置测倾器,测得风筝C的仰角∠CBD=60°;
(2)根据手中剩余线的长度出风筝线BC的长度为70米;
(3)量出测倾器的高度AB=1.5米.
根据测量数据,计算出风筝的高度CE约为
62.1
62.1
米.
(精确到0.1米,
3
≈1.73).
答案
62.1
解:在Rt△CBD中,
DC=BC·sin60°=70×
3
2
≈60.55.
∵AB=1.5,
∴CE=60.55+1.5≈62.1(米).
考点梳理
考点
分析
点评
专题
解直角三角形的应用-仰角俯角问题.
在Rt△CBD中,知道了斜边,求60°角的对边,可以用正弦值进行解答.
本题属于基础题,考查了利用三角函数的定义进行简单计算的能力.
计算题;压轴题.
找相似题
(2013·太原)如图,某地修建高速公路,要从B地向C地修一座隧道(B、C在同一水平面上).为了测量B、C两地之间的距离,某工程师乘坐热气球从C地出发,垂直上升100m到达A处,在A处观察B地的俯角为30°,则B、C两地之间的距离为( )
(2013·衢州)如图,小敏同学想测量一棵大树的高度.她站在B处仰望树顶,测得仰角为30°,再往大树的方向前进4m,测得仰角为60°,已知小敏同学身高(AB)为1.6m,则这棵树的高度为( )(结果精确到0.1m,
3
≈1.73).
(2012·泰安)如图,为测量某物体AB的高度,在D点测得A点的仰角为30°,朝物体AB方向前进20米,到达点C,再次测得点A的仰角为60°,则物体AB的高度为( )
(2012·黔西南州)兴义市进行城区规划,工程师需测某楼AB的高度,工程师在D得用高2m的测角仪CD,测得楼顶端A的仰角为30°,然后向楼前进30m到达E,又测得楼顶端A的仰角为60°,楼AB的高为( )
(2010·钦州)如图,为测量一幢大楼的高度,在地面上距离楼底O点20m的点A处,测得楼顶B点的仰角∠OAB=65°,则这幢大楼的高度为(结果保留3个有效数字)( )