试题
题目:
如图,已知楼高AB为50m,铁塔基与楼房房基间的水平距离BD为50m,塔高DC为
150+50
3
3
m,下列结论中,正确的是( )
A.由楼顶望塔顶仰角为60°
B.由楼顶望塔基俯角为60°
C.由楼顶望塔顶仰角为30°
D.由楼顶望塔基俯角为30°
答案
C
解:过点A作水平线AE,则∠EAD为楼顶望塔基俯角,∠CAE为由楼顶望塔顶仰角.
∵AB=50,
∴DE=50.
∴CE=CD=
150+50
3
3
-50=
50
3
3
.
∴tan∠CAE=CE:AE=CE:BD=
3
3
.
∴∠CAE=30°.
∵tan∠EAD=DE:AE=50:BD=1,
∴∠EAD=45°.
故选C.
考点梳理
考点
分析
点评
解直角三角形的应用-仰角俯角问题.
求CE,进而求得∠CAE的正切值即可求得∠CAE的度数;同理可求得∠EAD的正切值,得到∠EAD的度数.
本题考查仰角与俯角的定义.
找相似题
(2013·太原)如图,某地修建高速公路,要从B地向C地修一座隧道(B、C在同一水平面上).为了测量B、C两地之间的距离,某工程师乘坐热气球从C地出发,垂直上升100m到达A处,在A处观察B地的俯角为30°,则B、C两地之间的距离为( )
(2013·衢州)如图,小敏同学想测量一棵大树的高度.她站在B处仰望树顶,测得仰角为30°,再往大树的方向前进4m,测得仰角为60°,已知小敏同学身高(AB)为1.6m,则这棵树的高度为( )(结果精确到0.1m,
3
≈1.73).
(2012·泰安)如图,为测量某物体AB的高度,在D点测得A点的仰角为30°,朝物体AB方向前进20米,到达点C,再次测得点A的仰角为60°,则物体AB的高度为( )
(2012·黔西南州)兴义市进行城区规划,工程师需测某楼AB的高度,工程师在D得用高2m的测角仪CD,测得楼顶端A的仰角为30°,然后向楼前进30m到达E,又测得楼顶端A的仰角为60°,楼AB的高为( )
(2010·钦州)如图,为测量一幢大楼的高度,在地面上距离楼底O点20m的点A处,测得楼顶B点的仰角∠OAB=65°,则这幢大楼的高度为(结果保留3个有效数字)( )