试题
题目:
(2002·鄂州)如图,挂着“庆祝凤凰广场竣工”条幅的氢气球升在广场上空,已知气球的直径为4m,在地面A点测得气球中心O的仰角∠OAD=60°,测得气球的视角∠BAC=2°(AB、AC为⊙O的切线,B、C为切点).则气球中心O离地面的高度OD为( )(精确到1m,参考数据:sin1°=0.0175,
3
=1.732)
A.94m
B.95m
C.99m
D.105m
答案
C
解:连接OC.
在Rt△OAC中,OC=2,∠OAC=1°.
∴AO=114.2.
在Rt△OAD中,有OD=OA×sin60°≈99.
故选C.
考点梳理
考点
分析
点评
专题
解直角三角形的应用-仰角俯角问题.
连接圆心和切点,利用构造的直角三角形求得OA长,进而求得所求线段长.
本题考查仰角的定义,要求学生能借助仰角构造直角三角形,建立数学模型并解直角三角形.
压轴题.
找相似题
(2013·太原)如图,某地修建高速公路,要从B地向C地修一座隧道(B、C在同一水平面上).为了测量B、C两地之间的距离,某工程师乘坐热气球从C地出发,垂直上升100m到达A处,在A处观察B地的俯角为30°,则B、C两地之间的距离为( )
(2013·衢州)如图,小敏同学想测量一棵大树的高度.她站在B处仰望树顶,测得仰角为30°,再往大树的方向前进4m,测得仰角为60°,已知小敏同学身高(AB)为1.6m,则这棵树的高度为( )(结果精确到0.1m,
3
≈1.73).
(2012·泰安)如图,为测量某物体AB的高度,在D点测得A点的仰角为30°,朝物体AB方向前进20米,到达点C,再次测得点A的仰角为60°,则物体AB的高度为( )
(2012·黔西南州)兴义市进行城区规划,工程师需测某楼AB的高度,工程师在D得用高2m的测角仪CD,测得楼顶端A的仰角为30°,然后向楼前进30m到达E,又测得楼顶端A的仰角为60°,楼AB的高为( )
(2010·钦州)如图,为测量一幢大楼的高度,在地面上距离楼底O点20m的点A处,测得楼顶B点的仰角∠OAB=65°,则这幢大楼的高度为(结果保留3个有效数字)( )