试题
题目:
(2011·张家口一模)问题背景:在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息
如图1:甲组:测得一根直立于平地,长为80cm的竹竿的影长为60cm;
如图2:乙组:测得学校旗杆的影长为900cm;
如图3:丙组:测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的高度为350cm,影长为300cm.
解决问题:
(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度?
(2)如图3,设太阳光线MH与⊙O相切于点M,请根据甲、丙两组得到的信息,求景灯灯罩的半径?
答案
解:(1)∵同一时刻物高与影长成正比,
∴
AB
AC
=
DE
DF
,
即
80
60
=
DE
900
,
解得DE=1200cm;
(2)连接OM,设OM=r,
∵同一时刻物高与影长成正比,
∴
AB
AC
=
NG
GH
,
即
80
60
=
NG
300
,
解得NG=400cm,
在Rt△NGH中,NH=
NG
2
+
HG
2
=
400
2
+
300
2
=500cm,
设⊙O的半径为r,
∵MH与⊙O相切于点M,
∴OM⊥NH,
∴∠NMO=∠NGH=90°,
又∵∠ONM=∠GNH,
∴△NMO∽△NGH,
∴
OM
GH
=
NO
NH
,
即
r
300
=
NO
500
,
又∵NO=NK+KO=(NG-KG)+KO=400-350+r=50+r,
∴500r=300(50+r),
解得r=75cm.
故景灯灯罩的半径是75cm.
解:(1)∵同一时刻物高与影长成正比,
∴
AB
AC
=
DE
DF
,
即
80
60
=
DE
900
,
解得DE=1200cm;
(2)连接OM,设OM=r,
∵同一时刻物高与影长成正比,
∴
AB
AC
=
NG
GH
,
即
80
60
=
NG
300
,
解得NG=400cm,
在Rt△NGH中,NH=
NG
2
+
HG
2
=
400
2
+
300
2
=500cm,
设⊙O的半径为r,
∵MH与⊙O相切于点M,
∴OM⊥NH,
∴∠NMO=∠NGH=90°,
又∵∠ONM=∠GNH,
∴△NMO∽△NGH,
∴
OM
GH
=
NO
NH
,
即
r
300
=
NO
500
,
又∵NO=NK+KO=(NG-KG)+KO=400-350+r=50+r,
∴500r=300(50+r),
解得r=75cm.
故景灯灯罩的半径是75cm.
考点梳理
考点
分析
点评
专题
相似三角形的应用;切线的性质.
(1)根据同一时刻物高与影长成正比即可求出旗杆的高度;
(2)先根据同一时刻物高与影长成正比求出NG的长,再连接OM,由切线的性质可知OM⊥NH,进而可得出△NMO∽△NGH,再根据其对应边成比例列出比例式,然后用半径表示出ON,进行计算即可求出OM的长.
本题考查了把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求解,体现了转化的思想.此题的文字叙述比较多,解题时要认真分析题意.
探究型.
找相似题
(2013·咸宁)如图,正方形ABCD是一块绿化带,其中阴影部分EOFB,GHMN都是正方形的花圃.已知自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟在花圃上的概率为( )
(2011·丹东)某一时刻,身髙1.6m的小明在阳光下的影长是0.4m,同一时刻同一地点测得某旗杆的影长是5m,则该旗杆的高度是( )
(2010·泰州)一个铝质三角形框架三条边长分别为24cm、30cm、36cm,要估做一个与它相似的铝质三角形框架,现有长为27cm、45cm的两根铝材,要求以其中的一根为一边,从另一根上截下两段(允许有余料)作为另外两边.截法有( )
(2009·湘潭)同一时刻,身高2.26m的姚明在阳光下影长为1.13m;小林浩在阳光下的影长为0.64m,则小林浩的身高为( )
(2008·庆阳)如图,身高1.6米的学生小李想测量学校的旗杆的高度,当他站在C处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得AC=2米,BC=8米,则旗杆的高度是( )