试题

题目:
青果学院如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=10m,求树高AB.
答案
解:∵∠DEF=∠BCD=90°∠D=∠D
∴△DEF∽△DCB
BC
EF
=
DC
DE

∵DE=40cm=0.4m,EF=20cm=0.2m,AC=1.5m,CD=10m,
BC
0.2
=
10
0.4

∴BC=5米,
∴AB=AC+BC=1.5+5=6.5米
∴树高为6.5米.
解:∵∠DEF=∠BCD=90°∠D=∠D
∴△DEF∽△DCB
BC
EF
=
DC
DE

∵DE=40cm=0.4m,EF=20cm=0.2m,AC=1.5m,CD=10m,
BC
0.2
=
10
0.4

∴BC=5米,
∴AB=AC+BC=1.5+5=6.5米
∴树高为6.5米.
考点梳理
相似三角形的应用.
利用直角三角形DEF和直角三角形BCD相似求得BC的长后加上小明同学的身高即可求得树高AB.
本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型.
找相似题