试题
题目:
亮亮和颖颖住在同一幢住宅楼,两人准备用测量影子的方法测算其楼高,但恰逢阴天,于是两人商定改用下面方法:如图,亮亮蹲在地上,颖颖站在亮亮和楼之间,两人适当调整自己的位置,当楼的顶部M,颖颖的头顶B及亮亮的眼睛A恰在一条直线上时,两人分别标定自己的位置C,D.然后测出两人之间的距离CD=1.25m,颖颖与楼之间的距离DN=30m(C,D,N在一条直线上
),颖颖的身高BD=1.6m,亮亮蹲地观测时眼睛到地面的距离AC=0.8m.则住宅楼的高度为
20.8
20.8
米.
答案
20.8
解:过A作CN的平行线交BD于E,交MN于F.
由已知可得FN=ED=AC=0.8m,AE=CD=1.25m,EF=DN=30m,
∠AEB=∠AFM=90°.
又∵∠BAE=∠MAF,
∴△ABE∽△AMF.
∴
BE
MF
=
AE
AF
,
1.6-0.8
MF
=
1.25
1.25+30
,
解得MF=20m.
∴MN=MF+FN=20+0.8=20.8m.
∴住宅楼的高度为20.8m.
故答案为:20.8.
考点梳理
考点
分析
点评
专题
相似三角形的应用.
过A作CN的平行线交BD于E,交MN于F,由相似三角形的判定定理得出△ABE∽△AMF,再由相似三角形的对应边成比例即可得出MF的长,进而得出结论.
本题考查的是相似三角形的应用,解答此题的关键是将实际问题转化为数学问题进行解答;此题需要转化为相似三角形的问题,利用相似三角形的判定与性质求解.
探究型.
找相似题
(2013·咸宁)如图,正方形ABCD是一块绿化带,其中阴影部分EOFB,GHMN都是正方形的花圃.已知自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟在花圃上的概率为( )
(2011·丹东)某一时刻,身髙1.6m的小明在阳光下的影长是0.4m,同一时刻同一地点测得某旗杆的影长是5m,则该旗杆的高度是( )
(2010·泰州)一个铝质三角形框架三条边长分别为24cm、30cm、36cm,要估做一个与它相似的铝质三角形框架,现有长为27cm、45cm的两根铝材,要求以其中的一根为一边,从另一根上截下两段(允许有余料)作为另外两边.截法有( )
(2009·湘潭)同一时刻,身高2.26m的姚明在阳光下影长为1.13m;小林浩在阳光下的影长为0.64m,则小林浩的身高为( )
(2008·庆阳)如图,身高1.6米的学生小李想测量学校的旗杆的高度,当他站在C处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得AC=2米,BC=8米,则旗杆的高度是( )