试题
题目:
三国魏人刘徽,自撰《海岛算经》,专论测高望远.其中有一题,是数学史上有名的测量问题.今译如下:
如图,要测量海岛上一座山峰A的高度AH,立两根高三丈的标杆BC和DE,两竿相距BD=1 000步,D、B、H成一线,从BC退行123步到F,人目着地观察A,A、C、F三点共线;从DE退行127步到G,从G看A,A、E、G三点也共线.试算出山峰的高度AH及HB的距离.(古制1步=6尺,1里=180丈=1 800尺=300步.结果用里和步来表示)
答案
解:∵AH∥BC,
∴△BCF∽△HAF,
∴
BF
HF
=
BC
AH
,
又∵DE∥AH,
∴△DEG∽△HAG,
∴
DG
HG
=
DE
AH
,
又∵BC=DE,
∴
BF
HF
=
DG
HG
,
即
123
123+HB
=
127
127+1000+HB
,
∴BH=30750(步),
又∵
BF
HF
=
BC
AH
,
∴AH=
BC·HF
BF
,即AH=
5×(30750+123)
123
=1255(步).
解:∵AH∥BC,
∴△BCF∽△HAF,
∴
BF
HF
=
BC
AH
,
又∵DE∥AH,
∴△DEG∽△HAG,
∴
DG
HG
=
DE
AH
,
又∵BC=DE,
∴
BF
HF
=
DG
HG
,
即
123
123+HB
=
127
127+1000+HB
,
∴BH=30750(步),
又∵
BF
HF
=
BC
AH
,
∴AH=
BC·HF
BF
,即AH=
5×(30750+123)
123
=1255(步).
考点梳理
考点
分析
点评
相似三角形的应用.
根据“平行线法”证得△BCF∽△HAF、△DEG∽△HAG,然后由相似三角形的对应边成比例即可求解线段AH的长度.
能够熟练运用三角形的相似可解决一些简单的实际问题.
找相似题
(2013·咸宁)如图,正方形ABCD是一块绿化带,其中阴影部分EOFB,GHMN都是正方形的花圃.已知自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟在花圃上的概率为( )
(2011·丹东)某一时刻,身髙1.6m的小明在阳光下的影长是0.4m,同一时刻同一地点测得某旗杆的影长是5m,则该旗杆的高度是( )
(2010·泰州)一个铝质三角形框架三条边长分别为24cm、30cm、36cm,要估做一个与它相似的铝质三角形框架,现有长为27cm、45cm的两根铝材,要求以其中的一根为一边,从另一根上截下两段(允许有余料)作为另外两边.截法有( )
(2009·湘潭)同一时刻,身高2.26m的姚明在阳光下影长为1.13m;小林浩在阳光下的影长为0.64m,则小林浩的身高为( )
(2008·庆阳)如图,身高1.6米的学生小李想测量学校的旗杆的高度,当他站在C处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得AC=2米,BC=8米,则旗杆的高度是( )