试题
题目:
一个钢筋三角形框架三边长分别为20厘米,50厘米、60厘米,现要再做一个与其相似的钢筋三角形框架,而只有长是30厘米和50厘米的两根钢筋,要求以其中一根为边,从另一根上截下两段(允许有余料)作为两边,则不同的截法有( )
A.一种
B.二种
C.三种
D.四种
答案
B
解:①当把30厘米的钢筋作为最长边,把50厘米的钢筋按10厘米与25厘米两部分截,则:
10
20
=
25
50
=
30
60
=
1
2
;
②当30厘米的钢筋作为中长边,把50厘米分截出12厘米和36厘米两部分,
则有
20
12
=
50
30
=
60
36
=
5
3
.
③当30cm作为最短边:则另两边都会超过50cm,此时不合题意,
∴一共有两种截法.
故选B.
考点梳理
考点
分析
点评
相似三角形的应用.
①当把30厘米作为最长边,50厘米的钢筋截成10与25即可,利用三组对应边的相似比相等即可得所求三角形;②当把30厘米作为中长边,50厘米的钢筋截成12与36即可,③当30cm作为最短边,分别利用三组对应边的相似比相等即可得所求三角形.
本题考查了相似三角形的判定.能够根据不同的情况分情况讨论是解答本题的关键.
找相似题
(2013·咸宁)如图,正方形ABCD是一块绿化带,其中阴影部分EOFB,GHMN都是正方形的花圃.已知自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟在花圃上的概率为( )
(2011·丹东)某一时刻,身髙1.6m的小明在阳光下的影长是0.4m,同一时刻同一地点测得某旗杆的影长是5m,则该旗杆的高度是( )
(2010·泰州)一个铝质三角形框架三条边长分别为24cm、30cm、36cm,要估做一个与它相似的铝质三角形框架,现有长为27cm、45cm的两根铝材,要求以其中的一根为一边,从另一根上截下两段(允许有余料)作为另外两边.截法有( )
(2009·湘潭)同一时刻,身高2.26m的姚明在阳光下影长为1.13m;小林浩在阳光下的影长为0.64m,则小林浩的身高为( )
(2008·庆阳)如图,身高1.6米的学生小李想测量学校的旗杆的高度,当他站在C处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得AC=2米,BC=8米,则旗杆的高度是( )