试题
题目:
(2006·宜昌)如图,小明站在C处看甲乙两楼楼顶上的点A和点E,C、E、A三点在同一条直线上,点B,D分别在点E,A的正下方,B,C相距20米,D,C相距40米,乙楼高BE为15米,甲楼高AD( )米(忽略小明身高)
A.40
B.20
C.15
D.30
答案
D
解:∵AD∥BE
∴△CBE∽△CDA.
∴
CB
CD
=
EB
AD
,即
20
40
=
15
AD
.
∴AD=
40×15
20
=30(米).
故选D
考点梳理
考点
分析
点评
专题
相似三角形的应用.
由题可知,AD和BC平行,所以有相似三角形,根据对应边成比例列式求解即可.
本题考查相似三角形性质的应用.解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.
应用题;转化思想.
找相似题
(2013·咸宁)如图,正方形ABCD是一块绿化带,其中阴影部分EOFB,GHMN都是正方形的花圃.已知自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟在花圃上的概率为( )
(2011·丹东)某一时刻,身髙1.6m的小明在阳光下的影长是0.4m,同一时刻同一地点测得某旗杆的影长是5m,则该旗杆的高度是( )
(2010·泰州)一个铝质三角形框架三条边长分别为24cm、30cm、36cm,要估做一个与它相似的铝质三角形框架,现有长为27cm、45cm的两根铝材,要求以其中的一根为一边,从另一根上截下两段(允许有余料)作为另外两边.截法有( )
(2009·湘潭)同一时刻,身高2.26m的姚明在阳光下影长为1.13m;小林浩在阳光下的影长为0.64m,则小林浩的身高为( )
(2008·庆阳)如图,身高1.6米的学生小李想测量学校的旗杆的高度,当他站在C处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得AC=2米,BC=8米,则旗杆的高度是( )