试题
题目:
(2007·荆州)如图,这是圆桌正上方的灯泡(看作一个点)发出的光线照射到桌面后在地面上形成(圆形)的示意图.已知桌面直径为1.2米,桌面离地面1米.若灯泡离地面3米,则地面上阴影部分的面积为( )
A.0.36π米
2
B.0.81π米
2
C.2π米
2
D.3.24π米
2
答案
B
解:设阴影部分的直径是xm,则
1.2:x=2:3
解得x=1.8,
所以地面上阴影部分的面积为:S=πr
2
=0.81πm
2
.
故选B.
考点梳理
考点
分析
点评
专题
相似三角形的应用.
桌面离地面1米.若灯泡离地面3米,则灯泡离桌面是2米,桌面与阴影是相似图形,相似比是2:3,两个图形的半径的比就是相似比,设阴影部分的直径是xm,则1.2:x=2:3解得:x=1.8,因而地面上阴影部分的面积为0.81π米
2
.
本题主要考查了相似图形的性质,对应高线的比等于相似比.
应用题;压轴题.
找相似题
(2013·咸宁)如图,正方形ABCD是一块绿化带,其中阴影部分EOFB,GHMN都是正方形的花圃.已知自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟在花圃上的概率为( )
(2011·丹东)某一时刻,身髙1.6m的小明在阳光下的影长是0.4m,同一时刻同一地点测得某旗杆的影长是5m,则该旗杆的高度是( )
(2010·泰州)一个铝质三角形框架三条边长分别为24cm、30cm、36cm,要估做一个与它相似的铝质三角形框架,现有长为27cm、45cm的两根铝材,要求以其中的一根为一边,从另一根上截下两段(允许有余料)作为另外两边.截法有( )
(2009·湘潭)同一时刻,身高2.26m的姚明在阳光下影长为1.13m;小林浩在阳光下的影长为0.64m,则小林浩的身高为( )
(2008·庆阳)如图,身高1.6米的学生小李想测量学校的旗杆的高度,当他站在C处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得AC=2米,BC=8米,则旗杆的高度是( )