试题
题目:
在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,以C为圆心,以5cm为半径作圆,则此圆和斜边AB的位置关系是( )
A.相交
B.相切
C.相离
D.相交或相切
答案
A
解:∵由勾股定理得AB=10cm,
再根据三角形的面积公式得,6×8=10×斜边上的高,
∴斜边上的高=
24
5
cm,
∵5>
24
5
,
∴⊙C与AB相交.
故选A.
考点梳理
考点
分析
点评
直线与圆的位置关系.
根据题意可求得直角三角形斜边上的高,再根据直线和圆的位置关系,判断圆心到直线AB的距离与5cm的大小关系,从而确定⊙C与AB的位置关系.
本题考查了直线和圆的位置关系,解决的根据是直线和圆相离·圆心到直线的距离大于圆的半径.
找相似题
(2013·黔东南州)Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径作圆,若圆C与直线AB相切,则r的值为( )
(2013·盘锦)如图,△ABC中,AB=6,AC=8,BC=10,D、E分别是AC、AB的中点,则以DE为直径的圆与BC的位置关系是( )
(2012·衡阳)已知⊙O的直径等于12cm,圆心O到直线l的距离为5cm,则直线l与⊙O的交点个数为( )
(2010·娄底)在平面直角坐标系中,以点(3,2)为圆心、3为半径的圆,一定( )
(2008·南昌)在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定( )