试题
题目:
(2004·长春)如图,AB是⊙O的直径,弦CD⊥AB,垂足为P,若AP:PB=1:4,CD=8,求直径AB的长.
答案
解:∵AB为直径,CD⊥AB
∴PC=PD
∵CD=8
∴PC=PD=4(3分)
设AP=x,则PB=4x
由相交弦定理,得
x×4x=4×4
∴x=2
∴AB的长为10.(6分)
解:∵AB为直径,CD⊥AB
∴PC=PD
∵CD=8
∴PC=PD=4(3分)
设AP=x,则PB=4x
由相交弦定理,得
x×4x=4×4
∴x=2
∴AB的长为10.(6分)
考点梳理
考点
分析
点评
垂径定理;相交弦定理.
∵AB是直径,AB⊥CD所以利用垂径定理得到CP=PD,再利用相交弦定理就可以得到CP
2
=AP·BP,然后求出直径的长.
此题比较简单,主要考查垂径定理和相交弦定理的应用.
找相似题
(2009·鄂州)如图,已知AB为⊙O的直径,C为⊙O上一点,CD⊥AB于D,AD=9,BD=4,以C为圆心,CD为半径的圆与⊙O相交于P,Q两点,弦PQ交CD于E,则PE·EQ的值是( )
(2004·日照)如图,P是直径AB上的一点,且PA=2,PB=6,CD是过点P的弦,那么下列PC的长度,符合题意的是( )
(2004·金华)如图,⊙O的弦AB、CD交于点P,已知P是AB的中点,AB=8cm,PC=2cm,那么PD的长是( )
(2002·苏州)如图,⊙O的弦AB=8cm,弦CD平分AB于点E.若CE=2cm,则ED长为( )
(2002·金华)如图⊙O的弦CD交弦AB于P,PA=8,PB=6,PC=4,则PD的长为( )