试题

题目:
青果学院(2009·鄂州)如图,已知AB为⊙O的直径,C为⊙O上一点,CD⊥AB于D,AD=9,BD=4,以C为圆心,CD为半径的圆与⊙O相交于P,Q两点,弦PQ交CD于E,则PE·EQ的值是(  )



答案
D
青果学院解:延长DC交⊙C于M,延长CD交⊙O于N.
∵CD2=AD·DB,AD=9,BD=4,
∴CD=6.
在⊙O、⊙C中,由相交弦定理可知,PE·EQ=DE·EM=CE·EN,
设CE=x,则DE=6-x,
则(6-x)(x+6)=x(6-x+6),
解得x=3.
所以,CE=3,DE=6-3=3,EM=6+3=9.
所以PE·EQ=3×9=27.
故选D.
考点梳理
相交弦定理;垂径定理.
延长DC交⊙C于M,延长CD交⊙O于N.在⊙O中,由射影定理得CD=6.在⊙O、⊙C中,由相交弦定理可知PE·EQ=DE·EM=CE·EN,设CE=x,列方程求解得CE=3.所以DE=6-3=3,EM=6+3=9,即可求得PE·EQ.
此题综合运用了相交弦定理、垂径定理.
压轴题.
找相似题