试题
题目:
如图,梯形ABCD中,AD∥BC,对角线AC⊥BD,垂足为点M,过点D作DE⊥BC于点E,AC=8,BD=6,则梯形ABCD的高DE=
4.8
4.8
.
答案
4.8
解:
∵S
△ABC
=S
△BCD
∴BD×CM=AC×BM
同理可以得到BD×AM=AC×DM
∴
BM
CM
=
DM
AM
=
3
4
设BM=3x,CM=4x,DM=3y,AM=4y
∵BD=6,AC=8
∴x+y=2
由勾股定理得AD=5y,BC=5x
∴AD+BC=10
由梯形面积公式得
(AD+BC)×DE
2
=
AC×BD
2
=24
DE=4.8
故答案为4.8.
考点梳理
考点
分析
点评
勾股定理.
由图可知△ABC与△BCD底边与高都相同面积相等,△ABD与△ACD同样面积相等,可以利用面积公式得到AM与DM,BM与CM之间的关系,由勾股定理得到AD、BC的长度,然后运用梯形面积公式得到DE.
此题考查勾股定理在图形之中的运用问题,是一道综合性题目,我们应该善于寻找其中的关系,然后转化关系为我们的数学知识来解题.
找相似题
(2012·梧州)如图,∠AOC=∠BOC,点P在OC上,PD⊥OA于点D,PE⊥OB于点E.若OD=8,OP=10,则PE的长为( )
(2012·台湾)如图,△ABC中,AB=AC=17,BC=16,M是△ABC的重心,求AM的长度为何?( )
等腰三角形的底边为16cm,底边上的高为6cm,则腰长为( )
我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成一个大正方形(如图所示).如果大正方形的面积是49,小正方形的面积4,直角三角形的两直角边长分别为a,b,那么下列结论正确的有( )个.
(1)b-a=2,(2)a
2
+b
2
=49,(3)4+2ab=49,(4)a+b=
94
.
一个大正方形,被两条线段分割成两个小正方形和两个小长方形,若两个小正方形的面积分别为10和6,则小长方形的对角线AB的长为( )