试题
题目:
如图,作一个长2,宽1的长方形,以数轴的原点为旋转中心,将过原点的对角线顺时针旋转,使对角线的另一端点落在数轴正半轴的点A处,则点A表示的数是
5
5
.
答案
5
解:对角线的长:
1
2
+
2
2
=
5
,
根据旋转前后线段的长分别相等,
故A点表示的数=对角线的长=
5
.
故答案为:
5
.
考点梳理
考点
分析
点评
勾股定理;实数与数轴.
根据勾股定理求出长方形的对角线的长,再根据旋转的性质求出A点的数.
本题考查勾股定理和旋转的性质.旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改,要求学生了解常见的数学思想、方法.
找相似题
(2012·梧州)如图,∠AOC=∠BOC,点P在OC上,PD⊥OA于点D,PE⊥OB于点E.若OD=8,OP=10,则PE的长为( )
(2012·台湾)如图,△ABC中,AB=AC=17,BC=16,M是△ABC的重心,求AM的长度为何?( )
等腰三角形的底边为16cm,底边上的高为6cm,则腰长为( )
我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成一个大正方形(如图所示).如果大正方形的面积是49,小正方形的面积4,直角三角形的两直角边长分别为a,b,那么下列结论正确的有( )个.
(1)b-a=2,(2)a
2
+b
2
=49,(3)4+2ab=49,(4)a+b=
94
.
一个大正方形,被两条线段分割成两个小正方形和两个小长方形,若两个小正方形的面积分别为10和6,则小长方形的对角线AB的长为( )