试题
题目:
如图,△ABD和△ACE都是等腰直角三角形,∠BAD和∠CAE是直角,若AB=6,BC=5,AC=4,则DE的长为
79
79
.
答案
79
解:如图,连接BE,交CD于F.
根据SAS可以证明△ADC≌△ABE,则∠ADC=∠ABE.则∠DBF+∠BDF=90°
则∠BFD=90°.根据勾股定理得:
DF
2
=BD
2
-BF
2
,EF
2
=CE
2
-CF
2
,BF
2
+CF
2
=BC
2
.根据已知条件和勾股定理得BD=6
2
,CE=4
2
所以DE
2
=72+32-25,DE=
79
.
考点梳理
考点
分析
点评
勾股定理;全等三角形的判定与性质;等腰直角三角形.
先连接BE得到△ADC≌△ABE,进而得到∠DFB=90°从而得到四个直角三角形,在多次运用勾股定理可得出DE的长.
此题首先要巧妙构造辅助线发现全等三角形,进一步发现直角三角形,连续运用了勾股定理.
找相似题
(2012·梧州)如图,∠AOC=∠BOC,点P在OC上,PD⊥OA于点D,PE⊥OB于点E.若OD=8,OP=10,则PE的长为( )
(2012·台湾)如图,△ABC中,AB=AC=17,BC=16,M是△ABC的重心,求AM的长度为何?( )
等腰三角形的底边为16cm,底边上的高为6cm,则腰长为( )
我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成一个大正方形(如图所示).如果大正方形的面积是49,小正方形的面积4,直角三角形的两直角边长分别为a,b,那么下列结论正确的有( )个.
(1)b-a=2,(2)a
2
+b
2
=49,(3)4+2ab=49,(4)a+b=
94
.
一个大正方形,被两条线段分割成两个小正方形和两个小长方形,若两个小正方形的面积分别为10和6,则小长方形的对角线AB的长为( )