试题

题目:
青果学院如图,四边形ABCD中,∠A=∠C=90°,∠ABC=60°,AD=4,CD=10,则BD的长等于
4
13
4
13

答案
4
13

解:青果学院
延长BA、CD交于E,
∵∠C=90°,∠ABC=60°,
∴∠E=180°-90°-60°=30°,
∴DE=2AD=8,
∴CE=10+8=18,
∵tan∠ABC=
CE
BC

∴tan60°=
18
BC

BC=6
3

在Rt△BCD中,由勾股定理得:BD=
BC2+CD2
=
(6
3
)
2
+102
=4
13

故答案为:4
13
考点梳理
含30度角的直角三角形;三角形内角和定理;勾股定理.
延长BA、CD交于E,求出∠E,求出DE、CE长,在Rt△CBE中,求出BC,在Rt△CBD中,根据勾股定理求出BD即可.
本题考查了三角形的内角和定理,含30度角的直角三角形,勾股定理的应用,主要考查学生运用定理进行计算的能力,题目具有一定的代表性,难度适中.
计算题.
找相似题