试题
题目:
在直角△ABC中,∠C=90°,CD是斜边AB上的高,AC=8,BC=6,则BD=
3.6
3.6
.
答案
3.6
解:直角△ABC中,AC=8,BC=6,所以6
2
+8
2
=AB
2
,解得:AB=10,
Rt△ABC的面积为:
1
2
×AC×BC=
1
2
AB×CD
,所以CD=4.8.
在Rt△CDB中,BD
2
=BC
2
-CD
2
,解得:BD=3.6.
考点梳理
考点
分析
点评
勾股定理.
首先根据勾股定理求出AB的长度,然后根据Rt△ABC面积的不同计算公式求出CD的长度,在Rt△CDB中用勾股定理求出BD的长度.
本题主要考点:勾股定理的应用.在直角三角形中斜边的平方等于两直角边的平方和.另外在求一边上的高时可以利用面积的不同计算公式求出此高的长度.
找相似题
(2012·梧州)如图,∠AOC=∠BOC,点P在OC上,PD⊥OA于点D,PE⊥OB于点E.若OD=8,OP=10,则PE的长为( )
(2012·台湾)如图,△ABC中,AB=AC=17,BC=16,M是△ABC的重心,求AM的长度为何?( )
等腰三角形的底边为16cm,底边上的高为6cm,则腰长为( )
我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成一个大正方形(如图所示).如果大正方形的面积是49,小正方形的面积4,直角三角形的两直角边长分别为a,b,那么下列结论正确的有( )个.
(1)b-a=2,(2)a
2
+b
2
=49,(3)4+2ab=49,(4)a+b=
94
.
一个大正方形,被两条线段分割成两个小正方形和两个小长方形,若两个小正方形的面积分别为10和6,则小长方形的对角线AB的长为( )