试题
题目:
如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AB=4.以斜边AB的中点D为旋转中心,把△ABC按逆时针方向旋转α角(0°<α<120°),当点A的对应点与点C重合时,B,C两点的对应点分别记为E,F,EF与AB的交点为G,此时α等于
60
60
°,△DEG的面积为
3
2
3
2
.
答案
60
3
2
解:∵∠ACB=90°,∠B=30°,
∴∠A=60°,AC=
1
2
AB=2,
∵以斜边AB的中点D为旋转中心,点A的对应点与点C重合,
∴DA=DC,
∴∠A=∠ACD=60°,
∴△ADC是等边三角形,
AC=AD=DC=2,∠ADC=60°=∠EDG,
∴DE=CE-CD=4-2=2,∠DGE=90°,
∵∠E=30°,
∴DG=
1
2
DE=1,
由勾股定理得:GE=
3
,
∴S
△DEG
=
1
2
DG×GE=
1
2
×1×
3
=
3
2
.
故答案为:60,
3
2
.
考点梳理
考点
分析
点评
专题
旋转的性质;三角形的面积;等边三角形的判定与性质;含30度角的直角三角形;勾股定理.
根据直角三角形性质求出AC,∠A,根据旋转性质求出DA=DC,得出等边三角形ADC,求出∠EDG=60°和DC,求出ED长,求出∠DGE=90°,求出DG和EG,根据三角形的面积公式求出即可.
本题考查了等边三角形的性质和判定,勾股定理,旋转的性质,含30度角的直角三角形性质,三角形的面积等知识点的运用,关键是求出DG和EG的长,主要考查学生分析问题和解决问题的能力,题目综合性比较强,难度适中.
计算题.
找相似题
(2012·梧州)如图,∠AOC=∠BOC,点P在OC上,PD⊥OA于点D,PE⊥OB于点E.若OD=8,OP=10,则PE的长为( )
(2012·台湾)如图,△ABC中,AB=AC=17,BC=16,M是△ABC的重心,求AM的长度为何?( )
等腰三角形的底边为16cm,底边上的高为6cm,则腰长为( )
我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成一个大正方形(如图所示).如果大正方形的面积是49,小正方形的面积4,直角三角形的两直角边长分别为a,b,那么下列结论正确的有( )个.
(1)b-a=2,(2)a
2
+b
2
=49,(3)4+2ab=49,(4)a+b=
94
.
一个大正方形,被两条线段分割成两个小正方形和两个小长方形,若两个小正方形的面积分别为10和6,则小长方形的对角线AB的长为( )