试题
题目:
如图,在梯形ABCD中,AD∥BC,∠B=90°,AB=4cm,AD=18cm,BC=21cm,点P从点A出发,沿边AD向点D以2cm/s的速度移动,点Q从点C出发沿边CB向点B以6cm/s的速度移动,P、Q同时出发,若有一点运动到端点时,另一点也随之停止.则①CD=
5
5
cm;②经过
2.25或3
2.25或3
秒后,PQ=CD.
答案
5
2.25或3
解:①作DH⊥BC于H,则四边形ABHD是矩形.
∴DH=AB=4,BH=AD=18.
∴CH=BC-AD=21-18=3.
根据勾股定理,得CD=5(cm).
②设经过t秒后,PQ=CD.
根据题意,得AP=2t,CQ=6t.
如图1,此时四边形PQCD是平行四边形,则PD=CQ,即18-2t=6t,t=2.25(秒);
如图2,此时四边形PQCD是等腰梯形.
作PG⊥BC于G.
6t-(18-2t)=6,
8t=24,
t=3(秒).
考点梳理
考点
分析
点评
专题
直角梯形;勾股定理.
①只需作直角梯形的另一条高,根据矩形的性质和勾股定理进行计算;
②需要考虑两种情况:四边形PQCD是平行四边形或四边形PQCD是等腰梯形.
根据平行四边形的对边相等和等腰梯形的上下底的差的一半等于3的2倍进行计算.
作直角梯形的另一条高是常见的辅助线之一.
熟练运用矩形的性质、平行四边形的性质、等腰梯形的性质进行分析.
动点型.
找相似题
(2012·梧州)如图,∠AOC=∠BOC,点P在OC上,PD⊥OA于点D,PE⊥OB于点E.若OD=8,OP=10,则PE的长为( )
(2012·台湾)如图,△ABC中,AB=AC=17,BC=16,M是△ABC的重心,求AM的长度为何?( )
等腰三角形的底边为16cm,底边上的高为6cm,则腰长为( )
我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成一个大正方形(如图所示).如果大正方形的面积是49,小正方形的面积4,直角三角形的两直角边长分别为a,b,那么下列结论正确的有( )个.
(1)b-a=2,(2)a
2
+b
2
=49,(3)4+2ab=49,(4)a+b=
94
.
一个大正方形,被两条线段分割成两个小正方形和两个小长方形,若两个小正方形的面积分别为10和6,则小长方形的对角线AB的长为( )