试题
题目:
在等腰直角三角形ABC中,AB=AC=1,点E为AC的中点,点F在底边BC上,且FE⊥BE,则△CEF的面积为
1
24
1
24
.
答案
1
24
解:如图,过C作CD⊥CE与EF的延长线交于D.
因为∠ABE+∠AEB=90°,∠CED+∠AEB=90°,所以∠ABE=∠CED.
于是Rt△ABE∽Rt△CED,
∴
S
△CDE
S
△EAB
=(
CE
AB
)
2
=
1
4
,
CE
CD
=
AB
AE
=2,
∵∠ECF=∠DCF=45°,所以CF是∠DCE的平分线,点F到CE和CD的距离相等,
∵
S
△CEF
S
△CDF
=
CE
CD
=2,
∴S
△CEF
=
2
3
S
△CDE
=
2
3
×
1
4
S
△ABE
=
2
3
×
1
4
×
1
2
S
△ABC
=
1
24
,
故答案为:
1
24
.
考点梳理
考点
分析
点评
勾股定理;等腰直角三角形.
过C作CD⊥CE与EF的延长线交于D,构成直角三角形可证出Rt△ABE∽Rt△CED,然后证出其面积;或作FH⊥CE于H,设FH=h,Rt△EHF∽Rt△BAE,然后求出其面积.
本题考查了等腰三角形的性质,相似三角形的性质和三角形的面积公式,解题的关键是作出辅助线,然后构成直角三角形,用相似三角形的性质求面积.
找相似题
(2012·梧州)如图,∠AOC=∠BOC,点P在OC上,PD⊥OA于点D,PE⊥OB于点E.若OD=8,OP=10,则PE的长为( )
(2012·台湾)如图,△ABC中,AB=AC=17,BC=16,M是△ABC的重心,求AM的长度为何?( )
等腰三角形的底边为16cm,底边上的高为6cm,则腰长为( )
我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成一个大正方形(如图所示).如果大正方形的面积是49,小正方形的面积4,直角三角形的两直角边长分别为a,b,那么下列结论正确的有( )个.
(1)b-a=2,(2)a
2
+b
2
=49,(3)4+2ab=49,(4)a+b=
94
.
一个大正方形,被两条线段分割成两个小正方形和两个小长方形,若两个小正方形的面积分别为10和6,则小长方形的对角线AB的长为( )