试题
题目:
如图,梯形ABCD中,AD∥BC,∠A=90°,E为CD的中点,BE=13,梯形ABCD的面积为120,那么AB+BC+DA=
34
34
.
答案
34
解:设AB=h,AD=a,BC=b,延长BE与AD,交于F点,
则△BCE≌△FDE,DF=BC=b,
由勾股定理即面积公式得:
h
2
+
(a+b)
2
=
26
2
1
2
h(a+b)=120
整理得[h+(a+b)]
2
=1156,
即h+a+b=34.
故AB+BC+DA=34.
故答案为34.
考点梳理
考点
分析
点评
专题
勾股定理;三角形的稳定性;全等三角形的判定与性质.
延长BE与AD,交于F点,求证△BCE≌△FDE得DF=BC,设AB=h,AD=a,BC=b,则AF=a+b,AB=h,根据勾股定理和面积公式可得:
h
2
+
(a+b)
2
=
26
2
1
2
h(a+b)=120
整理求h+a+b即可.
本题考查了勾股定理的灵活运用,考查了梯形面积的计算公式,本题中构建△DEF是解题的关键.
计算题.
找相似题
(2012·梧州)如图,∠AOC=∠BOC,点P在OC上,PD⊥OA于点D,PE⊥OB于点E.若OD=8,OP=10,则PE的长为( )
(2012·台湾)如图,△ABC中,AB=AC=17,BC=16,M是△ABC的重心,求AM的长度为何?( )
等腰三角形的底边为16cm,底边上的高为6cm,则腰长为( )
我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成一个大正方形(如图所示).如果大正方形的面积是49,小正方形的面积4,直角三角形的两直角边长分别为a,b,那么下列结论正确的有( )个.
(1)b-a=2,(2)a
2
+b
2
=49,(3)4+2ab=49,(4)a+b=
94
.
一个大正方形,被两条线段分割成两个小正方形和两个小长方形,若两个小正方形的面积分别为10和6,则小长方形的对角线AB的长为( )