试题
题目:
直角三角形两直角边长分别为3和4,则它斜边上的高为
12
5
12
5
.
答案
12
5
解:设斜边长为c,高为h.
由勾股定理可得:c
2
=3
2
+4
2
,
则c=5,
直角三角形面积S=
1
2
×3×4=
1
2
×c×h
可得h=
12
5
,
故答案为:
12
5
.
考点梳理
考点
分析
点评
勾股定理.
根据勾股定理求出斜边的长,再根据面积法求出斜边上的高.
本题考查了利用勾股定理求直角三角形的边长及利用面积法求直角三角形的高,是解此类题目常用的方法.
找相似题
(2012·梧州)如图,∠AOC=∠BOC,点P在OC上,PD⊥OA于点D,PE⊥OB于点E.若OD=8,OP=10,则PE的长为( )
(2012·台湾)如图,△ABC中,AB=AC=17,BC=16,M是△ABC的重心,求AM的长度为何?( )
等腰三角形的底边为16cm,底边上的高为6cm,则腰长为( )
我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成一个大正方形(如图所示).如果大正方形的面积是49,小正方形的面积4,直角三角形的两直角边长分别为a,b,那么下列结论正确的有( )个.
(1)b-a=2,(2)a
2
+b
2
=49,(3)4+2ab=49,(4)a+b=
94
.
一个大正方形,被两条线段分割成两个小正方形和两个小长方形,若两个小正方形的面积分别为10和6,则小长方形的对角线AB的长为( )