翻折变换(折叠问题);勾股定理.
要求CE的长,就必须求出DE的长,如果设EC=x,那么我们可将DE,EC转化到一个三角形中进行计算,根据折叠的性质我们可得出AD=AF,DE=EF,那么DE,CE就都转化到直角三角形EFC中了,下面的关键就是求出FC的长,也就必须求出BF的长,在直角三角形ABF中,已知了AB的长,AF=AD=10,因此可求出BF的长,也就有了CF的长,在直角三角形EFC中,可用勾股定理,得出关于x的一元二次方程,进而求出未知数的值.
本题考查翻折变换的知识,有一定难度,关键是通过折叠的性质,将所求和已知的线段转换到同一个三角形中是解题的关
计算题.