试题
题目:
△ABC中,AB=AC=5,BD是AC边上的高,若BD=3,则BC=
10
或
3
10
10
或
3
10
.
答案
10
或
3
10
解:如图两种情况图一、图二
情况一:如图一
在△ABD中,由BD是AC边上的高,
则AD=
AB
2
-
DB
2
=4
∵AB=AC=5,∴CD=1
∴在Rt△CBD中,BC=
BD
2
+
CD
2
=
10
情况二:如图二
在△ABD中,由BD是AC边上的高,
则AD=
AB
2
-
DB
2
=4
∵AB=AC=5,∴CD=1
∴在Rt△CBD中,BC=
BD
2
+
CD
2
=3
10
故填
10
或
3
10
.
考点梳理
考点
分析
点评
勾股定理;等腰三角形的性质.
本题有两种情况,一种角A为锐角,一种为钝角,由已知条件利用勾股定理解得.
本题考查了勾股定理,本题容易忽略角A由锐角和钝角两种可能.然后利用勾股定理解得.
找相似题
(2012·梧州)如图,∠AOC=∠BOC,点P在OC上,PD⊥OA于点D,PE⊥OB于点E.若OD=8,OP=10,则PE的长为( )
(2012·台湾)如图,△ABC中,AB=AC=17,BC=16,M是△ABC的重心,求AM的长度为何?( )
等腰三角形的底边为16cm,底边上的高为6cm,则腰长为( )
我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成一个大正方形(如图所示).如果大正方形的面积是49,小正方形的面积4,直角三角形的两直角边长分别为a,b,那么下列结论正确的有( )个.
(1)b-a=2,(2)a
2
+b
2
=49,(3)4+2ab=49,(4)a+b=
94
.
一个大正方形,被两条线段分割成两个小正方形和两个小长方形,若两个小正方形的面积分别为10和6,则小长方形的对角线AB的长为( )