试题
题目:
如图,AD是△ABC的中线,∠ADC=60°,点C′与点C关于直线AD对称,若BC=6cm,则点B与点C′之间的距离为
3
3
cm.
答案
3
解:连接BC′,
∵点C′与点C关于直线AD对称,
∴AD⊥CC′,CE=C′E
∵AD是△ABC的中线
∴BD=CD
∴AD∥BC′
∴BC′⊥CC′,∠CBC′=∠ADC=60°
在Rt△BCC′中,BC=6,∠CBC′=60°,∴∠C′CB=30°,
∴BC′=
1
2
BC=
1
2
×6=3.
考点梳理
考点
分析
点评
线段垂直平分线的性质;等腰三角形的性质;勾股定理.
作辅助线,连接BC′,由点C′与点C关于直线AD对称,可知AD⊥CC′,再根据AD是△ABC的中线,可知AD∥BC′,故△BCC′为直角三角形,进而可将BC′的长度求出.
此题主要考查线段的垂直平分线的性质等几何知识.
找相似题
(2012·梧州)如图,∠AOC=∠BOC,点P在OC上,PD⊥OA于点D,PE⊥OB于点E.若OD=8,OP=10,则PE的长为( )
(2012·台湾)如图,△ABC中,AB=AC=17,BC=16,M是△ABC的重心,求AM的长度为何?( )
等腰三角形的底边为16cm,底边上的高为6cm,则腰长为( )
我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成一个大正方形(如图所示).如果大正方形的面积是49,小正方形的面积4,直角三角形的两直角边长分别为a,b,那么下列结论正确的有( )个.
(1)b-a=2,(2)a
2
+b
2
=49,(3)4+2ab=49,(4)a+b=
94
.
一个大正方形,被两条线段分割成两个小正方形和两个小长方形,若两个小正方形的面积分别为10和6,则小长方形的对角线AB的长为( )