试题
题目:
如图,是5×5的正方形网络,方格纸中△ABC的3个顶点分别在小正方形的顶点(格点)上,这样的三角形叫格点三角形,如果以点D、E为两个顶点作位置不同的格点三角形,使所作的格点三角形与△ABC全等,那么,这样的格点三角形最多可以画出
4
4
个.
答案
4
解:共4个三角形,如图
故答案为:4.
考点梳理
考点
分析
点评
专题
全等三角形的判定;勾股定理.
根据全等三角形的判定定理(SAS,ASA,AAS,SSS)判断后画出即可.
本题考查了全等三角形的判定,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.
网格型.
找相似题
(2012·梧州)如图,∠AOC=∠BOC,点P在OC上,PD⊥OA于点D,PE⊥OB于点E.若OD=8,OP=10,则PE的长为( )
(2012·台湾)如图,△ABC中,AB=AC=17,BC=16,M是△ABC的重心,求AM的长度为何?( )
等腰三角形的底边为16cm,底边上的高为6cm,则腰长为( )
我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成一个大正方形(如图所示).如果大正方形的面积是49,小正方形的面积4,直角三角形的两直角边长分别为a,b,那么下列结论正确的有( )个.
(1)b-a=2,(2)a
2
+b
2
=49,(3)4+2ab=49,(4)a+b=
94
.
一个大正方形,被两条线段分割成两个小正方形和两个小长方形,若两个小正方形的面积分别为10和6,则小长方形的对角线AB的长为( )