试题
题目:
如下图,△ABC中,∠C=90°,∠B=45°,AD是角平分线,DE⊥AB于E,则下列结论不正确的是( )
A.AC=AE
B.CD=DE
C.CD=DB
D.AB=AC+CD
答案
C
解:B、∵AD是角平分线,DE⊥AB,∠C=90°,
∴CD=DE,故本选项错误;
A、由勾股定理得:AC=
AD
2
-
CD
2
,AE=
AD
2
-
DE
2
,
∴AC=AE,故本选项错误;
D、∵∠B=45°,DE⊥AB,
∴∠BDE=180°-90°-45°=45°=∠B,
∴BE=DE=CD,
∴AB=AE+BE=AC+CD,故本选项错误;
C、∵CD=DE,BD>DE,
∴BD>CD,故本选项正确;
故选C.
考点梳理
考点
分析
点评
角平分线的性质;三角形内角和定理;等腰三角形的判定;勾股定理;等腰直角三角形.
根据角平分线性质求出CD=DE,根据勾股定理求出AC=AE,根据三角形的内角和定理求出∠B=∠BDE,推出BE=DE=CD,即可推出AB=AC+CD.
本题主要考查对三角形的内角和定理,等腰三角形的判定,角平分线性质,等腰直角三角形,勾股定理等知识点的理解和掌握,综合运用这些性质进行推理是解此题的关键.
找相似题
(2012·梧州)如图,∠AOC=∠BOC,点P在OC上,PD⊥OA于点D,PE⊥OB于点E.若OD=8,OP=10,则PE的长为( )
(2012·台湾)如图,△ABC中,AB=AC=17,BC=16,M是△ABC的重心,求AM的长度为何?( )
等腰三角形的底边为16cm,底边上的高为6cm,则腰长为( )
我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成一个大正方形(如图所示).如果大正方形的面积是49,小正方形的面积4,直角三角形的两直角边长分别为a,b,那么下列结论正确的有( )个.
(1)b-a=2,(2)a
2
+b
2
=49,(3)4+2ab=49,(4)a+b=
94
.
一个大正方形,被两条线段分割成两个小正方形和两个小长方形,若两个小正方形的面积分别为10和6,则小长方形的对角线AB的长为( )