试题
题目:
三角形的一个外角是100°,则与它不相邻的两内角平分线夹角(钝角)是
130
130
度.
答案
130
解:∵AD平分∠BAC,
∴∠1=∠2,
∵BD平分∠CBA,
∴∠3=∠4,
∵∠D=180°-(∠1+∠3).
∴∠1+∠3=
1
2
×100°=50°,
∴∠D=180°-(∠1+∠3)=180°-50°=130°.
考点梳理
考点
分析
点评
三角形的外角性质;角平分线的定义;三角形内角和定理.
根据角平分线的定义和三角形的任何一个外角等于和它不相邻的内角得和.
根据角平分线的定义,将∠1和∠3作为一个整体来看待,根据三角形内角和外角的关系解答.
找相似题
(2013·湘西州)如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是( )
(2011·绵阳)将一副常规的三角尺按如图方式放置,则图中∠AOB的度数为( )
(2011·东营)一副三角板如图叠放在一起,则图中∠α的度数为( )
(2010·重庆)如图,点B是△ADC的边AD的延长线上一点,DE∥AC,若∠C=50°,∠BDE=60°,则∠CDB的度数等于( )
(2010·台湾)如图所示是D,E,F,G四点在△ABC边上的位置图.根据图中的符号和数据,求x+y之值( )