试题
题目:
如图,钢索斜拉大桥为等腰三角形,支柱高24米,∠B=∠C=30°,E、F分别为BD、CD中点,试求(精确到1米):
(1)B、C两点之间的距离为
83
83
米;
(2)钢索AB的长度为
48
48
米;
(3)钢索AE的长度的长度为
30
30
米.
答案
83
48
30
解:(1)∵大桥为等腰三角形,支柱高24米,∠B=∠C=30°,
∴AB=AC=48米,BC=2BD,再根据勾股定理求得BD=24
3
≈41.6米,
则BC=2BD≈83米;
(2)∵∠B=30°,∴AB=48米;
(3)∵E为BD的中点,∴ED=
1
2
BD=
1
2
×41.6=20.8米,
由勾股定理得AE=
AD
2
+
ED
2
=
24
2
+
20.8
2
≈30米.
考点梳理
考点
分析
点评
勾股定理;含30度角的直角三角形.
根据直角三角形的性质及勾股定理解答即可.
运用了直角三角形的性质及勾股定理:30°所对的直角边是斜边的一半.
找相似题
(2012·梧州)如图,∠AOC=∠BOC,点P在OC上,PD⊥OA于点D,PE⊥OB于点E.若OD=8,OP=10,则PE的长为( )
(2012·台湾)如图,△ABC中,AB=AC=17,BC=16,M是△ABC的重心,求AM的长度为何?( )
等腰三角形的底边为16cm,底边上的高为6cm,则腰长为( )
我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成一个大正方形(如图所示).如果大正方形的面积是49,小正方形的面积4,直角三角形的两直角边长分别为a,b,那么下列结论正确的有( )个.
(1)b-a=2,(2)a
2
+b
2
=49,(3)4+2ab=49,(4)a+b=
94
.
一个大正方形,被两条线段分割成两个小正方形和两个小长方形,若两个小正方形的面积分别为10和6,则小长方形的对角线AB的长为( )