试题

题目:
下列方程的解分别是:
(1)
x-1
x+1
+
2x
1-x2
=0
x1=2+
3
x2=2-
3
x1=2+
3
x2=2-
3

(2)
x+3
x2-3x+2
+
x+2
x2-4x+3
=
x+1
x2-5x+6
x1=2
3
x2=-
3
x1=2
3
x2=-
3

(3)2(x+
1
x
)2-3(x+
1
x
)-5=0
x1=2,x2=
1
2
x1=2,x2=
1
2

(4)x2+2x-
3
x2+2x+1
=2
x3=0,x4=-2
x3=0,x4=-2

(5)
1
x2-2x-1
+
2
x2-2x-2
=
3
x2-2x-3
x1=
2+
10
2
x2=
2-
10
2
x1=
2+
10
2
x2=
2-
10
2

(6)
1
x-1
-
1
x-2
=
1
x-6
-
1
x-u
x=4
x=4

(u)
x-8
x-10
+
x-4
x-6
=
x-5
x-u
+
x-u
x-9
x=8
x=8

答案
x1=2+
3
x2=2-
3

x1=2
3
x2=-
3

x1=2,x2=
1
2

x3=0,x4=-2

x1=
2+
10
2
x2=
2-
10
2

x=4

x=8

解:(r)∵
x-r
x+r
-
2x
(x+r)(x-r)
=一
,∴(x-r)2-2x=一,
x2-4x+r=一,xr=2+
3
x2=2-
3

2)∵
x+3
(x-r)(x-2)
+
(x+2)
(x-r)(x-3)
=
x+r
(x-2)(x-3)

∴(x+3)(x-3)+(x+2)(x-2)=(x+r)(x-r),
∴x2=r2,∴xr=2
3
x2=-2
3

(3)令y=x+
r
x
,则原方程化为2y2-3y-5=一,
yr=-r,y2=
5
2
,∴x+
r
x
=-r,x2+x+r=一
无解,或x+
r
x
=
5
2

∴2x2-5x+2=一,∴xr=2,x2=
r
2

(4)令x2+2x-r=y,则原方程化为y-
3
y
=2
,∴y2-2y-3=一,∴yr=3,y2=-r,∴x2-2x-r=3,即x2-2x-4=一,∴xr=
5
-r,x2=-
5
-r

或x2+2x-r=-r,∴x3=一,x4=-2.
(5)设x2-2x-r=y,则原方程化为
r
y
+
2
y-r
=
3
y-2

∴(y-r)(y-2)+2y(y-2)-3y(y-r)=一,∴4y-2=一,y=
r
2
,∴x2-2x-r=
r
2
,∴2x2-4x-3=一,
xr=
2+
r一
2
x2=
2-
r一
2

(6)∵
(x-2)-(x-r)
(x-2)(x-r)
=
(x-7)-(x-6)
(x-6)(x-7)

r
(x-2)(x-r)
=
r
(x-6)(x-7)

∴r一x=4一,∴x=4.
(7)
x-r一+2
x-r一
+
x-6+2
x-6
=
x-7+2
x-7
+
x-6+2
x-9

∴原方程化为
r
x-r一
-
r
x-6
=
r
x-7
+
r
x-9

r
x-r一
-
r
x-9
=
r
x-7
-
r
x-6

r
(x-r一)(x-9)
=
r
(x-7)(x-6)
∴x=8
考点梳理
解分式方程;换元法解分式方程.
这几道题应注意换元法的运用;解决此类题如
x-8
x-10
+
x-4
x-6
=
x-5
x-7
+
x-7
x-9
,关键是使其分母先相等或分子先相等,再使其分子或分母相等.
本题主要考查用换元法解分式方程,难度较大.注意:换元法应先将方程中多次出现的一个式子设为一个字母,然后得到一个新的方程,然后解出,反代入原式即可求解.
计算题;换元法.
找相似题