试题
题目:
如图,将·OABC放置在平面直角坐标系xOy内,已知AB边所在直线的解析为:y=-x+4.
(1)点C的坐标是(
-4
-4
,
4
4
);
(2)若将·OABC绕点O逆时针旋转90°得OBDE,BD交OC于点P,求△OBP的面积;
(3)在(2)的情形下,若再将四边形OBDE沿y轴正方向平移,设平移的距离为x(0≤x≤8),与·OABC重叠部分面积为S,试写出S关于x的函数关系式,并求出S的最大值.
答案
-4
4
解:(1)∵AB边所在直线的解析为:y=-x+4,
∴点A的坐标为:(4,0),点B的坐标为:(0,4),
∵四边形ABCD是平行四边形,
∴BC=OA=4,BC∥OA,
∴点C的坐标为:(-4,4);
故答案为:-4,4;
(2)由旋转的性质,可得:OD=OB=4,
∵∠BOD=90°,
∴∠OBD=45°,
∵OB=BC,∠OBC=90°,
∴∠BOC=45°,
∴∠OPB=90°,BP=OP,
∵OB=4,
∴OP=BP=2
2
,
∴S
△OBP
=
1
2
OP·BP=4;
(3)①如图1:当0≤x<4时,
∵OF=GB=x,
∴S
△OFK
=
1
4
x
2
,S
△HBG
=
1
2
x
2
.
∵S
△OPG
=
1
4
(x+4)
2
,
∴S
五边形KFBHP
=
1
4
(x+4)
2
-
1
4
x
2
-
1
2
x
2
=-
1
2
x
2
+2x+4=-
1
2
(x-2)
2
+6.
当x=2时,S
max
=f(2)=6;
②当4≤x≤8时,
∵HB=FB=x-4,
∴CH=8-x,
∴S
△CPH
=
1
4
(8-x)
2
.
当x=4时,S
max
=f(4)=4.
∴当x=2时,S取得最大值为6.
考点梳理
考点
分析
点评
一次函数综合题.
(1)由AB边所在直线的解析为:y=-x+4,即可求得点A与B的坐标,又由四边形OABC是平行四边形,即可求得BC=OA=4,则可求得点C的坐标;
(2)易证得△OBP是等腰直角三角形,又由BO=4,即可求得△OBP的面积;
(3)分别从当0≤x<4时与当4≤x≤8时去分析求解即可求得答案.
此题属于一次函数的综合题,考查了一次函数的性质、二次函数的最值问题、平行四边形的性质、旋转的性质以及平移的性质.此题难度较大,注意掌握数形结合思想与分类讨论思想的应用.
找相似题
(2012·铁岭)如图所示,在平面直角坐标系中,直线OM是正比例函数y=-
3
x的图象,点A的坐标为(1,0),在直线OM上找点N,使△ONA是等腰三角形,符合条件的点N的个数是( )
(2011·苏州)如图,巳知A点坐标为(5,0),直线y=x+b(b>0)与y轴交于点B,连接AB,∠α=75°,则b的值为( )
(2011·日照)在平面直角坐标系中,已知直线y=-
3
4
x+3与x轴、y轴分别交于A、B两点,点C(0,n)是y轴正半轴上一点.把坐标平面沿直线AC折叠,使点B刚好落在x轴上,则点C的坐标是( )
(2013·天桥区二模)如图,在平面直角坐标系中,多边形OABCDE的顶点坐标分别是O(0,0),A(0,6),B(4,6),C(4,4),D(6,4),E(6,0).若直线l经过点M(2,3),且将多边形OABCDE分割成面积相等的两部分,则下列各点在直线l上的是( )
(2013·乐山模拟)如图,已知A、B两点的坐标分别为(8,0)、(0,-6),⊙C的圆心坐标为(0,7),半径为5.若P是⊙C上的一个动点,线段PB与x轴交于点D,则△ABD面积的最大值是( )