试题
题目:
(2013·乐山模拟)如图,已知A、B两点的坐标分别为(8,0)、(0,-6),⊙C的圆心坐标为(0,7),半径为5.若P是⊙C上的一个动点,线段PB与x轴交于点D,则△ABD面积的最大值是( )
A.63
B.31
1
2
C.32
D.30
答案
B
解:当直线BP与圆相切时,△ABD的面积最大.
连接PC,则∠CPB=90°,
在直角△BCP中,BP=
B
C
2
-P
C
2
=
1
3
2
-
5
2
=12.
∵∠CPB=90°.
∴∠DOB=∠CPB=90°
又∵∠DBP=∠CBP,
∴△OBD∽△PBC,
∴
OD
PC
=
OB
BP
=
6
12
=
1
2
,
∴OD=
1
2
PC=
5
2
.
∴AD=OD+OA=
5
2
+8=
21
2
,
∴S
△ABD
=
1
2
AD·OB=
1
2
×
21
2
×6=31
1
2
.
故选B.
考点梳理
考点
分析
点评
一次函数综合题.
当直线BP与圆相切时,△ABD的面积最大,易证△OBD∽△PBC,根据相似三角形的对应边的比相等即可求得OD的长,则AD的长度可以求得,最后利用三角形的面积公式即可求解.
本题考查了切线的性质,以及相似三角形的判定与性质,理解△ADB的面积最大的条件是关键.
找相似题
(2012·铁岭)如图所示,在平面直角坐标系中,直线OM是正比例函数y=-
3
x的图象,点A的坐标为(1,0),在直线OM上找点N,使△ONA是等腰三角形,符合条件的点N的个数是( )
(2011·苏州)如图,巳知A点坐标为(5,0),直线y=x+b(b>0)与y轴交于点B,连接AB,∠α=75°,则b的值为( )
(2011·日照)在平面直角坐标系中,已知直线y=-
3
4
x+3与x轴、y轴分别交于A、B两点,点C(0,n)是y轴正半轴上一点.把坐标平面沿直线AC折叠,使点B刚好落在x轴上,则点C的坐标是( )
(2013·天桥区二模)如图,在平面直角坐标系中,多边形OABCDE的顶点坐标分别是O(0,0),A(0,6),B(4,6),C(4,4),D(6,4),E(6,0).若直线l经过点M(2,3),且将多边形OABCDE分割成面积相等的两部分,则下列各点在直线l上的是( )
(2013·保康县模拟)如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=6,点A、B的坐标分别为(1,0)、(4,0).将△ABC沿x轴向右平移,当点C落在直线
y=
3
x-2
3
上时,线段BC扫过的面积为( )