试题

题目:
青果学院如图,△ABC中,∠C=Rt∠,AB=10cm,BC=6cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.
(1)出发2秒后,求△ABP的周长.
(2)问t为何值时,△BCP为等腰三角形?
(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?
答案
青果学院
解:(1)∵∠C=90°,AB=10cm,BC=6cm,∴有勾股定理得AC=8cm,动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm
∴出发2秒后,则CP=2cm,那么AP=6cm.
∵∠C=90°,
∴有勾股定理得PB=2
10
cm
∴△ABP的周长为:AP+PB+AB=6+10+2
10
=(16+2
10
)cm;

(2)若P在边AC上时,BC=CP=6cm,
此时用的时间为6s,△BCP为等腰三角形;
若P在AB边上时,有两种情况:
①若使BP=CB=6cm,此时AP=4cm,P运动的路程为12cm,
所以用的时间为12s,故t=12s时△BCP为等腰三角形;
②若CP=BC=6cm,过C作斜边AB的高,根据面积法求得高为4.8cm,
根据勾股定理求得BP=7.2cm,
所以P运动的路程为18-7.2=10.8cm,
∴t的时间为10.8s,△BCP为等腰三角形;
③若BP=CP时,则∠PCB=∠PBC,
∵∠ACP+∠BCP=90°,∠PBC+∠CAP=90°,∴∠ACP=∠CAP,∴PA=PC
∴PA=PB=5cm
∴P的路程为13cm,所以时间为13s时,△BCP为等腰三角形.
∴t=13s或12s或 10.8s 时△BCP为等腰三角形;

(3)当P点在AC上,Q在AB上,则AP=8-t,AQ=16-2t,
∵直线PQ把△ABC的周长分成相等的两部分,
∴8-t+16-2t=12,
∴t=4;
当P点在AB上,Q在AC上,则AP=t-8,AQ=2t-16,
∵直线PQ把△ABC的周长分成相等的两部分,
∴t-8+2t-16=12,
∴t=12,
∴当t为4或12秒时,直线PQ把△ABC的周长分成相等的两部分.
青果学院
解:(1)∵∠C=90°,AB=10cm,BC=6cm,∴有勾股定理得AC=8cm,动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm
∴出发2秒后,则CP=2cm,那么AP=6cm.
∵∠C=90°,
∴有勾股定理得PB=2
10
cm
∴△ABP的周长为:AP+PB+AB=6+10+2
10
=(16+2
10
)cm;

(2)若P在边AC上时,BC=CP=6cm,
此时用的时间为6s,△BCP为等腰三角形;
若P在AB边上时,有两种情况:
①若使BP=CB=6cm,此时AP=4cm,P运动的路程为12cm,
所以用的时间为12s,故t=12s时△BCP为等腰三角形;
②若CP=BC=6cm,过C作斜边AB的高,根据面积法求得高为4.8cm,
根据勾股定理求得BP=7.2cm,
所以P运动的路程为18-7.2=10.8cm,
∴t的时间为10.8s,△BCP为等腰三角形;
③若BP=CP时,则∠PCB=∠PBC,
∵∠ACP+∠BCP=90°,∠PBC+∠CAP=90°,∴∠ACP=∠CAP,∴PA=PC
∴PA=PB=5cm
∴P的路程为13cm,所以时间为13s时,△BCP为等腰三角形.
∴t=13s或12s或 10.8s 时△BCP为等腰三角形;

(3)当P点在AC上,Q在AB上,则AP=8-t,AQ=16-2t,
∵直线PQ把△ABC的周长分成相等的两部分,
∴8-t+16-2t=12,
∴t=4;
当P点在AB上,Q在AC上,则AP=t-8,AQ=2t-16,
∵直线PQ把△ABC的周长分成相等的两部分,
∴t-8+2t-16=12,
∴t=12,
∴当t为4或12秒时,直线PQ把△ABC的周长分成相等的两部分.
考点梳理
等腰三角形的判定;一次函数综合题.
(1)利用勾股定理AC=8cm和PB=2
10
cm,所以求出了三角形的周长.
(2)利用分类讨论的思想和等腰三角形的特点及三角形的面积求出答案.
(3)利用分类讨论的思想和周长的定义求出了答案.
考查了等腰三角形的判定,利用了勾股定理求出三角形的一条直角边,还利用分类讨论的思想求出所要求的答案.
找相似题