试题
题目:
如图,已知OC=OE,OD=OB,试说明△ADE≌△ABC.
答案
解:在△COD和△BOE中,
OC=OE
∠COD=∠EOB
OD=OB
,
∴△COD≌△BOE,
∴∠D=∠B,
∵OC=OE,OD=OB,
∴DE=BC
在△ADE和△ABC中,
∠A=∠A
∠B=∠D
DE=BD
,
∴△ADE≌△ABC.
解:在△COD和△BOE中,
OC=OE
∠COD=∠EOB
OD=OB
,
∴△COD≌△BOE,
∴∠D=∠B,
∵OC=OE,OD=OB,
∴DE=BC
在△ADE和△ABC中,
∠A=∠A
∠B=∠D
DE=BD
,
∴△ADE≌△ABC.
考点梳理
考点
分析
点评
专题
全等三角形的判定.
由OC=OE,OD=OB,可得到BC=DE,再利用SAS得到△COD≌△BOE,得到∠D=∠B,再利用AAS得到△ADE≌△ABC.
本题考查了三角形的全等的判定,三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.
证明题.
找相似题
(2013·本溪)如图,在菱形ABCD中,∠BAD=2∠B,E,F分别为BC,CD的中点,连接AE、AC、AF,则图中与△ABE全等的三角形(△ABE除外)有( )
(2012·深圳)下列命题
①方程x
2
=x的解是x=1;
②4的平方根是2;
③有两边和一角相等的两个三角形全等;
④连接任意四边形各边中点的四边形是平行四边形;
其中正确的个数有( )
(2011·上海)下列命题中,真命题是( )
(2011·百色)下列命题中是真命题的是( )
(2010·凉山州)如图所示,∠E=∠F=90°,∠B=∠C,AE=AF,结论:①EM=FN;②CD=DN;③∠FAN=∠EAM;④△ACN≌△ABM.其中正确的有( )