试题

题目:
观察下列图形,并阅读图形下面的相关文字:
①两直线相交,最多1个交点;②三条直线相交最多有3个交点;③四条直线相交最多有6个交点;那么十条直线相交交点个数最多有(  )
青果学院



答案
B
解:10条直线两两相交,最多有
1
2
n(n-1)
=
1
2
×10×9=45.
故选B.
考点梳理
直线、射线、线段.
根据题意,结合图形,发现:3条直线相交最多有3个交点,4条直线相交最多有6个交点,5条直线相交最多有10个交点.而3=1+2,6=1+2+3,10=1+2+3+4,故可猜想,n条直线相交,最多有1+2+3+…+(n-1)=
1
2
n(n-1)
个交点.
此题在相交线的基础上,着重培养学生的观察、实验和猜想、归纳能力,掌握从特殊向一般猜想的方法.
找相似题