试题

题目:
若AB为⊙O的直径,弦CD⊥AB于E,AE=16cm,BE=4cm,则CD=
16
16
cm,AC=
8
5
8
5
cm.
答案
16

8
5

青果学院解:连接OC,
∵AE=16cm,BE=4cm,
∴AB=20cm,OC=OB=10cm,OE=6cm,
∴由勾股定理得CE=
OC2-OE2
=
102-62
=8cm,
∴由垂径定理得CD=2CE=16cm,
∴由勾股定理得AC=
CE2+AE2
=
82+162
=8
5
cm.
故答案为:16;8
5
考点梳理
垂径定理;勾股定理.
根据题意画出图形,连接OC,则AB=20cm,OC=OB=10cm,求得OE=6cm,由勾股定理得CE的长,由垂径定理求得CD的长.最后再根据勾股定理得AC的长.
本题综合考查了垂径定理和勾股定理.解答这类题一些学生不会综合运用所学知识解答问题,不知从何处入手造成错解.
计算题.
找相似题