试题
题目:
如图,在△ABC中,CD是高,CE为∠ACB的平分线.若AC=15,BC=20,CD=12,则CE的长等于
60
2
7
60
2
7
.
答案
60
2
7
解:如图,由勾股定理知AD=9,BD=16,
所以AB=AD+BD=25.
故由勾股定理逆定理知△ACB为直角三角形,
且∠ACB=90°.
作EF⊥BC,垂足为F.设EF=x,
由
∠ECF=
1
2
∠ACB=45°
,
得CF=x,于是BF=20-x.由于EF∥AC,
所以
EF
AC
=
BF
BC
,
即
x
15
=
20-x
20
,
解得
x=
60
7
.
所以
CE=
2
x=
60
2
7
.
故答案为:
60
2
7
.
考点梳理
考点
分析
点评
专题
平行线分线段成比例;勾股定理.
先根据勾股定理和勾股定理逆定理知△ACB为直角三角形.再作EF⊥BC,垂足为F.根据等腰三角形的性质和平行线分线段成比例定理即可求得CE的长.
本题考查了勾股定理和勾股定理逆定理及平行线分线段成比例定理的理解及运用,综合性较强,有一定难度.
综合题.
找相似题
(2013·资阳)如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )
(2013·枣庄)如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG的长为( )
(2013·温州)如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是( )
(2013·绥化)已知:如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:
①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE
2
=2(AD
2
+AB
2
),
其中结论正确的个数是( )
(2013·南昌)如图,正六边形ABCDEF中,AB=2,点P是ED的中点,连接AP,则AP的长为( )