试题
题目:
如图,Rt△ABC中,∠ACB=90°,CD⊥AB,D为垂足,若AD=2,BD=4,则AC=
2
3
2
3
,cosA=
3
3
3
3
.
答案
2
3
3
3
解:∵∠ACB=90°,CD⊥AB,
∴△ACD∽△ABC,
∴AC:AD=AB:AC,
又∵AD=2,BD=4,
∴AC
2
=2(2+4)=12,
∴AC=2
3
,
∴cosA=
AD
AC
=
2
2
3
=
3
3
.
故答案是2
3
,
3
3
.
考点梳理
考点
分析
点评
专题
相似三角形的判定与性质;勾股定理;锐角三角函数的定义.
由于∠ACB=90°,CD⊥AB,那么有△ACD∽△ABC,于是AC:AD=AB:AC,而AD=2,BD=4,从而可求AC,再利用余弦的定义可求cosA.
本题考查了相似三角形的判定和性质、余弦的计算.在直角三角形中,斜边上的高所分成两个三角形与原三角形相似.
计算题.
找相似题
(2013·资阳)如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )
(2013·枣庄)如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG的长为( )
(2013·温州)如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是( )
(2013·绥化)已知:如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:
①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE
2
=2(AD
2
+AB
2
),
其中结论正确的个数是( )
(2013·南昌)如图,正六边形ABCDEF中,AB=2,点P是ED的中点,连接AP,则AP的长为( )