试题
题目:
如图,直径AB和弦CD相交于点E,已知AE=1cm,EB=5cm,∠DEB=60°,则CD的长为
2
6
cm
2
6
cm
.
答案
2
6
cm
解:过点O作OF⊥CD,连接OD,
∵AE=1cm,EB=5cm,
∴AB=AE+EB=1+5=6cm,
∴OA=OD=3cm,
∴OE=OA-AE=3-1=2cm,
在Rt△OEF中∠DEB=60°,OE=2cm,
∴OF=OE·sin∠DEB=2×
3
2
=
3
cm,
在Rt△ODF中,
DF=
OD
2
-
OF
2
=
3
2
-
(
3
)
2
=
6
cm,
∵OF⊥CD,
∴CD=2DF=2×
6
=2
6
cm.
故答案为:2
6
cm.
考点梳理
考点
分析
点评
专题
垂径定理;含30度角的直角三角形;勾股定理.
过点O作OF⊥CD,连接OD,由AE=1cm,EB=5cm可求出圆的半径,进而可得出OE的长,在Rt△OEF中根据∠DEB=60°及OE的长可求出OF的长,在Rt△ODF中利用勾股定理可求出DF的长,进而可得出CD的长.
本题考查的是垂径定理、勾股定理及直角三角形的性质,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
探究型.
找相似题
(2013·资阳)如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )
(2013·枣庄)如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG的长为( )
(2013·温州)如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是( )
(2013·绥化)已知:如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:
①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE
2
=2(AD
2
+AB
2
),
其中结论正确的个数是( )
(2013·南昌)如图,正六边形ABCDEF中,AB=2,点P是ED的中点,连接AP,则AP的长为( )