试题
题目:
如图,过正方形ABCD的顶点B作直线l,过A、C两点分别作直线l的垂线,垂足分别为E、F.若AE=1,EF=2,则BC的长度为
10
10
.
答案
10
解:∵四边形ABCD是正方形,
∴AB=BC,∠BAD=∠ABC=90°,
∵AE⊥直线l,CF⊥直线l,
∴∠CFB=∠AEB=90°,
∴∠EAB+∠ABE=∠ABE+∠CBF=90°,
∴∠CBF=∠BAE,
∵在△ABE和△BCF中,
∠BAE=∠CBF
∠AEB=∠BFC
AB=BC
∴△ABE≌△BCF(AAS),
∴AE=BF=1,CF=BE=3,
∴在Rt△CBF中,由勾股定理得:BC=
B
F
2
+C
F
2
=
1
2
+
3
2
=
10
,
故答案为:
10
.
考点梳理
考点
分析
点评
正方形的性质;全等三角形的判定与性质;勾股定理.
求出AB=BC,∠BAE=∠CBF,∠AEB=∠BFC,证△ABE≌△BCF,推出AE=BF=1,在Rt△CBF中由勾股定理求出即可.
本题考查了三角形内角和定理,正方形性质,全等三角形的性质和判定,勾股定理的应用,关键是推出AE=BF=1.
找相似题
(2013·资阳)如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )
(2013·枣庄)如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG的长为( )
(2013·温州)如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是( )
(2013·绥化)已知:如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:
①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE
2
=2(AD
2
+AB
2
),
其中结论正确的个数是( )
(2013·南昌)如图,正六边形ABCDEF中,AB=2,点P是ED的中点,连接AP,则AP的长为( )