试题
题目:
(2010·南宁)如图所示,在Rt△ABC中,∠A=90°,BD平分∠ABC,交AC于点D,且AB=4,BD=5,则点D到BC的距离是( )
A.3
B.4
C.5
D.6
答案
A
解:过D点作DE⊥BC于E.
∵∠A=90°,AB=4,BD=5,
∴AD=
BD
2
-
AB
2
=
5
2
-
4
2
=3,
∵BD平分∠ABC,∠A=90°,
∴点D到BC的距离=AD=3.
故选A.
考点梳理
考点
分析
点评
专题
勾股定理的证明.
先根据勾股定理求出AD的长度,再根据角平分线上的点到角的两边的距离相等的性质解答.
本题利用勾股定理和角平分线的性质.
压轴题.
找相似题
如图,“赵爽弦图”由4个全等的直角三角形所围成,在Rt△ABC中,AC=b,BC=a,∠ACB=90°,若图中大正方形的面积为40,小正方形的面积为5,则(a+b)
2
的值为( )
如图,这是我国古代一个数学家构造的“勾股圆方图”(见课本第76页),他第一个利用此图证明了“勾股定理”.这个数学家是( )
利用四个全等的直角三角形可以拼成如图所示的图形,这个图形被称为弦图.观察图形,可以验证( )公式.
(2008·湖州)利用图(1)或图(2)两个图形中的有关面积的等量关系都能证明数学中一个十分著名
的定理,这个定理称为
勾股定理
勾股定理
,该定理的结论其数学表达式是
a
2
+b
2
=c
2
a
2
+b
2
=c
2
.
如图,利用图(1)或图(2)两个图形中的有关面积的等量关系都能证明
数学中一个十分著名的定理,这个定理结论的数学表达式是
a
2
+b
2
=c
2
a
2
+b
2
=c
2
.