试题
题目:
如图,∠ACB=90°,AC=BC,AE⊥CE于E,BD⊥CE于D,AE=5cm,BD=2cm,则DE的长是( )
A.8
B.5
C.3
D.2
答案
C
解:∵∠ACB=90°,AC=BC,AE⊥CE于E,BD⊥CE于D,
∴∠CAE+∠ACD=∠ACD+∠BCD,
∴∠CAE=∠BCD,
又∵∠AEC=∠CDB=90°,AC=BC,
∴△AEC≌△CDB.
∴CE=BD=2,CD=AE=5,
∴ED=CD-CE=5-2=3(cm).
故选C.
考点梳理
考点
分析
点评
直角三角形全等的判定;全等三角形的性质.
根据已知条件,观察图形得∠CAE+∠ACD=∠ACD+∠BCD,∠CAE=∠BCD,然后证△AEC≌△CDB后求解.
本题考查了直角三角形全等的判定方法;题目利用全等三角形的判定和性质求解,发现并利用∠CAE+∠ACD=∠ACD+∠BCD,∠CAE=∠BCD,是解题的关键.
找相似题
(2007·贵港)如图,△ABC是等腰直角三角形,∠ACB=90°,AC=BC,若CD⊥AB,DE⊥BC垂足分别是D、E.则图中全等的三角形共有( )
下列各组条件中,能判断两个直角三角形全等的是( )
如图,在△ABC中,∠BAC=90°,AB=AC,AE是经过A点的一条直线,且B,C在AE的两侧,BD⊥AE于D,CE⊥AE于E,CE=2,BD=6,则DE的长为( )
有以下条件:①一锐角与一边对应相等;②两边对应相等;③两锐角对应相等.其中能判断两直角三角形全等的是( )
下列说法中,正确的个数是( )
①斜边和一直角边对应相等的两个直角三角形全等;
②有两边和它们的对应夹角相等的两个直角三角形全等;
③一锐角和斜边对应相等的两个直角三角形全等;
④两个锐角对应相等的两个直角三角形全等.