试题

题目:
青果学院如图所示,在梯形ABCD中,AB∥DC,AD=DB,AB=AC,∠ACD=30°,则∠BAD的度数是
45°
45°

答案
45°

青果学院解:过点C,D分别作CE⊥AB于E,DF⊥AB于F,
∵AB∥CD,
∴DF=CE,∠CAB=∠ACD=30°,
在Rt△ACE中,CE=
1
2
AC,
∵AC=AB,
∴DF=
1
2
AB,
∵AD=BD,
∴∠DAB=∠DBA,AF=BF=
1
2
AB=DF,
∴∠DAB=∠ADF=∠ABD=∠BDF=45°,
∴∠BAD=45°.
故答案为:45°.
考点梳理
梯形;等腰三角形的性质.
首先作辅助线:过点C,D分别作CE⊥AB于E,DF⊥AB于F,根据梯形的性质,可得:DF=CE,∠CAB=∠ACD=30°,又由直角三角形的性质,可得DF=
1
2
AB,根据等腰三角形中的三线合一,可得AF=DF=BF,问题得解.
此题考查了梯形的性质和等腰三角形的性质,以及直角三角形的知识等.此题综合性较强,难度适中,注意数形结合思想的应用.
计算题.
找相似题