试题
题目:
(2011·河南三模)如图,在等腰△ABC中,AC=BC,AC的垂直平分线DE交BC于点D,交AC于点E,△ABD的周长为10,BC=6,则△ABC的周长为( )
A.4
B.10
C.12
D.16
答案
D
解:∵AC的垂直平分线DE交BC于点D,
∴DA=DC,
又∵△ABD的周长为10,即AB+AD+BD=10,
∴AB+DC+BD=10,
∴AB+BC=10,
而CA=CB,BC=6,
∴CA=6,
∴△ABC的周长=AB+BC+AC=10+6=16.
故选D.
考点梳理
考点
分析
点评
专题
线段垂直平分线的性质;等腰三角形的性质.
根据线段垂直平分线的性质得到DA=DC,由△ABD的周长为10得AB+AD+BD=10,则AB+DC+BD=10,即AB+BC=10,而CA=CB,BC=6,即可得到△ABC的周长.
本题考查了线段垂直平分线的性质:线段垂直平分线上的点到线段两段点的距离相等.也考查了三角形周长的定义.
计算题.
找相似题
(2013·枣庄)如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为( )
在等腰△ABC中,AB=AC.
(1)若M是BC的中点,过M任作一直线交AB,AC(或其延长线)于D,E,求证:2AB<AD+AE.
(2)若P是△ABC内一点,且PB<PC,求证:∠APB>∠APC.
在△ABC中,若AB<
1
2
AC
,求证:∠ACB<
1
2
∠ABC.
(2013·南平)如图,在△ABC中,AB=AC,DE∥BC,∠ADE=48°,则下列结论中不正确的是( )
(2013·广安)等腰三角形的一条边长为6,另一边长为13,则它的周长为( )