试题
题目:
(2001·温州)等腰三角形的一个底角是30°,则它的顶角是( )
A.30°
B.40°
C.75°
D.120°
答案
D
解:因为等腰三角形的两个底角相等,已知一个底角是30°,
所以它的顶角是180°-30°-30°=120°.
故选D.
考点梳理
考点
分析
点评
等腰三角形的性质;三角形内角和定理.
根据已知可得到另一底角度数,根据三角形内角和定理即可求得顶角的度数.
此题考查等腰三角形的性质及三角形内角和定理的运用.本题给出了底角是30°,问题就变得比较简单,属于基础题.
找相似题
(2013·枣庄)如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为( )
在等腰△ABC中,AB=AC.
(1)若M是BC的中点,过M任作一直线交AB,AC(或其延长线)于D,E,求证:2AB<AD+AE.
(2)若P是△ABC内一点,且PB<PC,求证:∠APB>∠APC.
在△ABC中,若AB<
1
2
AC
,求证:∠ACB<
1
2
∠ABC.
(2013·南平)如图,在△ABC中,AB=AC,DE∥BC,∠ADE=48°,则下列结论中不正确的是( )
(2013·广安)等腰三角形的一条边长为6,另一边长为13,则它的周长为( )